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Abstract. The present paper is concerned with a general approach to the construction and the 
numerical analysis of stable methods solving semi-infinite convex programs and variational inequalities 
of elliptical type in case where the considered problems are incorrect. The approach which is based on 
the application of the PROX-regularization (cf. Martinet, 1970; Ekeland and Temam, 1976; Rockafel- 
lar, 1976; Br6zis and Lions, 1978; Lemaire, 1988) secures the strong convergence of the minimizing 
sequence. The possibility of the algorithmical realization is described and depends on the smoothness 
properties of the solutions. 
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1. I n t r o d u c t i o n  

The problem under  consideration is the following: 

J(u)---~inf, u E K0, (1) 

where J : V---~ E is a convex and continuous functional, K 0 is a convex and closed 
subset of a Hilbert  space V. Moreover,  it is assumed that 

U ~  {u E K0: J(u) =inf{J (v ) :  v E K0} } ~ 0 .  

The solution of a problem of such a type will usually be obtained by applying an 
approximation of the set K 0 by K i and of the functional J by Ji. 

If J is strongly convex and Gateaux-differentiable then the following statement 
about  the convergence of a sequence {ui}, ui~-argmin,~KiJ(u), to u * '~  

arg minuEK0 J(u) takes place (for different variants of this proposition cf. Mosco, 
1969; Pankov, 1979). Denote  u* ' ;=  arg minucKi J(u) and suppose that there are 
given convex, closed sets K i and the gradient criterion 

IIv/(u i) -VJ(u*")llv. ~i (i = 1, 2 , . . . )  

is fulfilled with lim e i = 0 (V* is the topological dual space to V); furthermore,  we 
consider the sets 

*Supported by Deutsche Forschungsgemeinschaft under grant Ti 191/1-1. 

Journal of Global Optimization 3: 243-255, 1993. 
(~) 1993 Kluwer Academic Publishers. Printed in the Netherlands. 



244 A. KAPLAN AND R. TICHATSCHKE 

sxv) = {u �9 v :  I l u -  vii ~ r } ,  

O i  = Ki ['~ Sr(uS'O), i = O, 1, 2 . . . .  , 

and Pn denotes the Hausdorff  distance. 

T H E O R E M  1. For fixed r > 0 it is assumed that lim PH(Qo, Q~) = O. Then for the 
iterates strong convergence to the optimal solution of  the initial problem (1) holds, 
i.e., lim u i = u *'~ 

Theorem 1 is a corollary of Theorem A by Mosco (1969) and characterizes the 
well-posedness of the problem�9 

But if the functional J is not strongly convex, problem (1) can be ill-posed and 
usually we can only prove that 

lim J(u i) = inf{J(u): u �9 K0}. 

For  such a class of ill-posed problems a general scheme is described below 
�9 i �9 �9 i constructing a sequence {u }, hm mlnve~: Ilu - vii = 0, which converges strongly 

to u*'~ �9 U 0 = Arg minuEK0 J(u) ,  if U ~ ~ 0. 

2. The Iterative Process and Its Convergence 

Let  {J/} (i = 1, 2 , . . . )  be a family of convex and Gateaux-differentiable functio- 
nals such that 

sup [J(u) - J;(u)l ~< ~ ,  lim o'~ = 0 
u E V  

and {K~} (i = 1, 2 , . . . ) ,  K i C V be a family of convex, closed sets approximizing 

/r 
For a fixed u ~ and a given sequence {ei} {i = 1, 2 , . .  ) the following formal 

iterative procedure is considered in order  to construct a minimizing sequence {u ~} 
for the initial problem (1): 

IlVx~(u i) -vx, (a ' ) l l~ ,  ~< e , ,  ( 2 )  

with the regularized functional 

X,(u) = L ( u )  + II u - d - i l l  2 , ( 3 )  

where ti t = arg min{xi(u):  u �9 K,}, E i ~ O, lim 8 i ~---  0 and I1.11 denotes the norm of 
the elements in V. 

The properties of the PROX-mapping 

Proxa, la  : a--> arg umin {f(u)  + II u - all  2} 

using for this approach are described, for instance, by Ekeland and Temam 
(1976), except Lemma 2 below, which is new in our opinion. Therefore,  we make 
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the following notations: 

p(P, T)  = sup p(v, T), 
v E P  

p(v, T ) =  inf I1~- wll, 
w e T  

Qi = Ki n s t (o ) ,  1 
q,,(u) = J(u) + Ilu - u i - l [ 1 2 ,  

i 
q = arg min qJi(u), 

u E Q  0 

(i = 0, 1, 2 . . . .  ) 

= K '  n St(0 ), where K'  is a subset of K o containing U ~ and {qi}. 

Suppose that 

I J (u )  - J ( u ' ) l  
sup <~ v(r) < 

o.,Es~o~ I l u -  u'll 

A S S U M P T I O N  1. Given a continuous increasing functional q~: ~+ ~ ~+,  q~(0) = 
O, such that the estimates 

P(Q,, Qo) <~ q~(hi) (4) 
(i=0, 1,2,...) 

P(O, Qi) <~ q~(h,) (5) 

hold true for a fixed sequence {hi} with h i >i hi+ 1 and lim h i = O. 

A S S U M P T I O N  2. For some r > 0 and for each i >i I there exists a point ft i E K i n 
Sr(O ) such that the inequality 

J(fi i )  ~< inf J(u) + 2 v ( r ) 8 , ,  ( i  = O, 1, 2 . . . .  ) 
u E K  i 

(6) 

is satisfied with lim 6i = 0 (in general it is not assumed that Arg minuet,  J(u) # 0). 

For further investigations, if method (2), (3) is considered, it is assumed that 
the choice of r corresponds with Assumption 2. 

We shall specially seperate the case if the convex functional J satisfies the 
following condition, which is weaker than the usual assumption about the strong 
convexity for the energy functionals: in particular, in this case the initial problem 
can have more than one solution or no solutions. 

C O N D I T I O N  (*) .  The inequality 

J(u)- J(v)>~ <j(u), u - v> + a l l P u  - Pvll 2 

holds true for some 6 > 0 and each u, v E V, where ( . , . )  denotes the duality 
connection between V and V* and P is an orthogonal projector  on a subspace 
V'  Q V of finite defect and j(v) is an arbitrary element of the subdifferential aJ(v).  
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Condition (*)  is natural for elliptical variational inequalities and, obviously, it is 
always satisfied for convex semi-infinite problems. 

T H E O R E M  2. Suppose the Assumptions 1 and 2 are fulfilled, and for  some r' <~ r 
let U ~ f? Sr,/8(O ) ~ ft; U ~ ~ K o 71 S~,/4(0 ) and 

,,] r' 
;=t (2z,(r)(q~(h,) + ~i) + 2~ ~/2 + 2q~(h;) + ~ < ~- . (7) 

Then, using the iteration process (2), (3), the estimates II u'll ~ r' and IIti'll ~ r' are 
true, where a i= argmin,eK; Xi(u). If, moreover, El= 1 e~/2 < %  then {u i} weakly 
converges to some u* E U ~ and subject to the additional conditions (*) the relation 

limi__,~ Ilu'- u*ll = 0 holds. 

The proof of this main result essentially uses the following statements, which are 
of interest by themselves, too. Consider O~(u)= J ( u ) +  I lu-  U ' I I  ~, where C ~ is 
arbitrarily chosen and the sequence { ~i} let be satisfy the conditions 

Oi(~i)~umEigoOi(u)_]_~/i ' p(~i, Oo)~ .~  i ( i = 0 , 1 , 2 , . . . ) .  ( 8 )  

L E M M A  1. Suppose U ~ ~ ~t and the parameters Yi and ~ in (8) are chosen such c~ 
that ~=~ y]/2 < ~ and r~;=l ~,~'~ < ~. Then the sequence {~:;} weakly converges to 
some element ~* o f  the set U ~ and, i f  J satisfies the condition (*), the relation 
l im~= II ~ ' -  ~*11 = 0 is true. 

Proof. Denote ~0 = s u p i = l , 2  . . . .  "Yi. Since ~:;-1 C Sr+~o(O ) for each i and due to 
the estimate 

](U --  ~ i -1 ,  U -- ~ / - 1 )  --  (U t __ ~ i - 1 ,  U'  --  ~ ; - 1 ) 1  

~ 4 ( r +  "70)llu - u'll for any u, u ' E  Sr++0(0 ) 
together with the Lipschitz property of J, we obtain ]0~(u) - Oi(u')[ <~ [l,(r + Yo) + 
4(r+ ~o)]llu- u'll = ff(r)llu - u'll, where ~(r)= ~(r+ "70) + 4 ( r +  Y0). Hence, 
with ~:;---arg minwcoo 11~;- wll, one gets 10;(~ :/) - 0~(~;)1 ~< JT(r)-7~ and, due to the 
choice of ~' in (8), 

Oi(~i) ~ .zoomin 0;(u) + 3'; + ff(r)~; = ,mien 0;(u) + ~;, 

where ~. = Yi + ~(r)yi. 
Because of the strong convexity of 0; for ~; ~- arg min,~Q00;(u) the inequalities 

0, (~ ' )  - 0;(~;)  ~> (~,(~'), ~ ; -  ~;> + I 1 ~ ' -  ~;112 , 
(~(gi), ~i_ g,)/>0 

are true for some zi(~ i) E 30i(~ i) and we can estimate 
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I1~'-  ~'11 ~< -~'2 . - ~ ,  

Therefore,  

I1~ ' -  r ~< ~],2 + %. (9) 

Because of (8), (9) the Theorem 1 in Rockafellar (1976) guarantees that {~/} 
weakly converges to some element u * C  U ~ and limi__,~ II ~'-r = 0. Hence 

lim II ~i __ ~i-1 II ---- 0.  (10) 

Now, let the condition (*)  be fulfilled. Regarding the definition of the points ~ i  

and the Proposition 2.2.2 in Ekeland/Temam (1976), we get 

J(o) >~ j (~ i )  + 2 ( ~ i - 1  _ ~ i ) ,  o - ~i> for all v �9 Q0 (11) 

and since J is a weak lower semi-continuous functional one can conclude from 
(10), (11) that 

lim J ( ~ )  = J(u*) .  (12) 

But due to (8) 

j (~ i )  ~l~i__ ~i-1 ii 2 + j (~ , )  + ~, (13) 

and using (10), (12) and (13) we obtain 

J(u*) <~ lim inf J (~i)  ~< lira sup J(~i)  << J (u*) .  
i - -*~  i ~ m  

Consequently,  

lira J ( s  ci) = J(u*) .  (14) 
i----~ ee 

The relation limi__,~ II ~ ' -  u*ll = 0 follows now obviously from condition (*)  and 
(14). �9 

L E M M A  2. Let f : V---> ~ be a convex, continuous functional and G C V be a 

convex, closed set; furthermore, 

fmin = inf f ( u ) > - - ~  f ( f i ) - f m i n < ~ 6 f o r s o m e f i E G  (15) 
u @ G  ~ 

Then the estimate 

[IPr~ a~ - fII ~< II a~ - flJ + V ~  

holds true for each a ~ �9 V. 
Proof. Due to the determination a ~ =-Proxc#a ~ and the theorem on the 

subdifferential over the sum of functionals (cf. Ekeland/Temam, 1976) there 
exists an element ~" of the subdifferential af(a ~) such that 

( ~ ' + 2 I ( a  l - a ~  I ) / > 0  for each u � 9  (16) 
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Because of the convexity o f f  and of inequality (15) we get ( if,/5 - a I } ~< 6, which 
together with (16) leads to 

(2I(a 1 - a~ - /5  + a 1} <~ 6 .  

Therefore ,  

_ _ _ a 1 _ a 1 I1#-#112 Ila~ (a 1 a ~ - a ~  1 a ~ - / 5 )  
-< _ Ila I - a~ 2 + 6 ,  

lla ~ -/511~ lla ~ + V~. �9 

The result of this lemma can be trivially extended to the case, when f : V-+ ~ 
U {+~} is a convex, l ower  semi-continuous functional with inf,  e v f ( u ) > - ~  

and d o m f  # 0. 
Together  with these facts we are ab le  now to prove Theorem 2. 

Proof  o f  Theorem 2. Let u* E U ~ n St,/8(0 ). Due to the conditions (4), (5) the 
points v i E Qi, and 6 i E Q0 can be chosen such that 

Ilvi-u*ll<-~(hi), l l 6 i - f t i [ [ ~ r  i = 1 , 2 , . . .  (17) 

Hence J(6  i) - J(a ~) <~ u(r)~p(hi). Taking into consideration that J(u*) <<- j ( f i )  and 

property (6) hold true, we conclude 

J(u*)  - inf J(u) <~ p(r)(~(h~) + 26~), 
u C K  i 

which together with J(u*) >! J(v ~) - v(r)~(h~) leads to 

J(v ~) - inf J(u) <~2u(r)(r + 6~) 
u E K  i 

and hence 

Ji(v ~) - inf J/(u) <~2v(r)(~(hi) + ~i) + 2~ =- tzi �9 
u E K  i 

Using now Lemma 2 with G = Kg, a ~ = u ~-t,/5 = v ~, f = Ji and 6 = &, we estimate 

Ilai - v*ll < l lue- l  - o'll + v - ~  . 

Regarding the strong convexity of Xi, the choice of t7 ~ and the condition (2), the 

following inequalities hold: 

II a i -  u*ll ~< Ilu '-~ - u*ll + ~ + 2~(h i ) ,  (18) 

Ei  (19) Ilu*- u*ll-< Ilu i-1 - u*ll + v-a;, + 2r + ~ .  

From the inequalities (7), (18), (19) and the choice of u ~ we get 

I l u ~ l l < r  ' and I l a ~ l l < r  ' .  
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Summarizing the inequalities in (19) for i = 1, 2 , . . . ,  k it follows 

i=1 

and on account of (19) (for i = k + 1) we have 

max{lla k§  u*ll, Ilu k + ' -  "*11} 

~< It u~ - u* II + • V ~ / +  2q~(hi) + , 
i=1 

therefore,  Iluk+~[I ~< r' and Ila~+'ll-< r' can be concluded. If qJi(ff i)/> ~Oi(qi), we 
choose z i E  Q~ such that Ilz ~ -  qil[ ~< q~(hi)- Hence, I~O(z ~) - @~(qi)t <~(v(r) + 
4r)q~(h~) and together with Xi(z ~) >I X~(ff i) the inequalities 

qJ~(z i) >/~(t7 ~) - 2o-~ 1> qJ~(q~) - 2 ~ ,  

qJ~(li ~) - tOi( q ~) <~ (v(r) + 4r)q~(h~) + 2o-~ 

are true. 
Taking into consideration the strong convexity of X~, condition (2) and 

14,4- J(u')l sup <~ v(r) < oo 
~ Ilu- u'll 

we get the estimate 

g i ~oX#) - 4,xa') <<- (~(r) + 4r) 3 '  

this implies 

q~(u~) - ~i( qJ) <~ (v(r) + 4r)( q~(h~) + ~ ) + 2 q  . 

In case of ~O~(t~ ~) < ~Oi(q ~) it is clear that 

qJi(u') - 4'~( q') < (v(r) + 4r) ~- . 

Besides, p(d,  Qo) <~ ~p(h~)+ e~/2 holds. Now to finish the proof we can use 
Lemma 1. �9 

R E M A R K  1. Lemaire (1988, Theorem 3) (see also Theorem 3.2 in Alart and 
Lemaire,  1991) has been established the convergence of an analogous iterative 
process under the conditions that J, J~: V---~ ~ are proper, closed and convex 
functionals, K = Ki = V and the closeness between J and J~ is measured in terms 
of their Moreau-Yosida  approximations. This requires to provide a sufficient 
exactness of the approximation for any element of the set Q0 by elements of the 
set Q~ (see the last condition of Theorem 3 in Lemaire, 1988). 

However ,  as a rule, this is impossible, if finite element approximations are 



250 A. K A P L A N  A N D  R. T I C H A T S C H K E  

applied for variational inequalities, because in this case the elements of Q0 are not 
sufficiently smooth (see Theorem 3 below and Hlavacek et al., 1986). 

REMARK 2. If J is a convex, Gateaux-differentiable functional and the closeness 
between J and J~ is defined by 

sup I IW(u)  - v J i ( u ) l l v .  <~ o i  , 
u E v  

then the statement of Theorem 2 (replacing inequality (7) by 

Z (2q~(r))l/2(~o(hi) + ~i) 1/2 "~- 2~0(hi) + 2o-/+ < ~-) 
i=l 

holds true without the assumption that Ji is a convex functional (cf. Kaplan/ 
Tichatschke, 1991). From the practical point of view this is essential, because the 
errors of the approximation can transform the incorrect problem into a global 
optimization problem. 

R E M A R K  3. Analyzing the described scheme, it should be noted that, on 
principle, the parameters {hi}, {o-i} and {ei} can be chosen freely, i.e., it can be 
guaranteed the necessary order for the approximation of the set Q0, of the 
functional J and the required exactness of the solution in the approximated 
problems. Hereby the conditions of Theorem 2 are not contradictory, if the 
choice of {Ki} takes place with a quick convergence of {6i} to 0. If the choice of 
the parameters r and {6i}, corresponding to Assumption 2 and inequality (7), 
cannot be guaranteed (cf. Example 2 below), then the iteration procedure (2), (3) 
has to be modified by exchanging Ji with 

~i'(u ) = Ji(u ) + pZ(u, St1(0)) , (20) 

where r 1 > 0 is chosen such that U ~ fq Sq(0) r ~. 
For a~(u)= J(u)+ pZ(u, St1(0)) the Assumption 2 is satisfied for sufficiently 

large r with 6~ -= 0 (i = 1, 2 , . . . ) ,  and the assertions of Theorem 2 are valid. This 
process is developed by Kaplan (1990) for the case that J is a quadratical 
functional. 

3. Application to Variational Inequalities and SIP 

It is clear that the realization of method (2), (3) depends on the PoSsibility to 
construct a functional ~ with the required properties and can be studied using the 
considerated approach for solving concrete problems. 

Now the described scheme will be briefly sketched for solving elliptical varia- 
tional inequalities, where for the construction of the family {Ki} the method of 
finite elements is used on a sequence of triangulations with the characteristic 
parameter hi-->0 and where the inclusion K i C K o is guaranteed for all i. The 
determination of function q~ is connected with serious difficulties, which as a rule, 
result from the weak smoothness of the solutions of variational inequalities. Now 
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problem (1) is considered with 

1 
1(u) = ff ( A u ,  u) - ( [ ,  u ) ,  

where A:  V-+ V* is an elliptical operator of second kind, V =  H 1, f E H ~  
L2(~) m (H i are Sobolev spaces of m-dimensional vector functions on f~), and f t  is 
a plane and connected domain with sufficiently smooth boundary F. 

Suppose that the solutions of the initial problem and of the problem min 
{J (u)  + II u 112: u E K0} belong to H 2 for every f E H ~ and there exists a constant 
c o independently of f and u, for which the following inequality is true: 

Ilull 2-< co(ll fll g + Ilul12), (21) 

where II. 112, II. II0 and II. I11 are norms in the corresponding spaces H 2, H ~ and H' .  
Now we are able to analyse the choice of function ~ for the process (2), (3) 

starting from (21). For the sake of simplicity we consider the case ]~ = J. 
Suppose the triangulation sequence {~lhi } of the domain ~1 fulfils the standard 

properties of regularity (cf. for instance Glowinski et al., 1981). Then we have the 
estimate 

11V -- V h II ~ CII V 112 h (22) 

if V E H 2 is interpolated by a linear combination v h of piece-wise linear basis 
functions, where c is independent of v. This estimate is also true at f~ as well as at 
the grid domains 12 h for f~h D ~ (by a corresponding continuation of the function 
v). 

Let f E H ~ be fixed and 

r = (co[llfll0 + 2r] 2 + r2) 1/2ch =--eh 

and, moreover, r > 411frlv., g ~ n s . , js(o)  # 0, where 

2(M + 4) (~  - II - (23) 

sup 
,o,~,  II~ll 

We note that in the proof of the first statement of Theorem 2 instead of condition 
(5) only the condition p(u*,  Qi) ~< ~~ (i = 1, 2 . . . .  ) is used, where u* E U ~ f-/ 
S,,/s(0 ). Because of (21) the inequality 

can be obtained, therefore 

Ilu*-uh,*ll < ~ h i = ~ ~  ( i = 1 , 2 , . . . ) ,  
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r 
and if q~(hi) < ~,  we get uhi E Qi such that 

p(u*, Qi)<~ Ilu* - u~ll  ~ r 
In this way, if the assumptions of Theorem 2 are fulfilled with the function 
~o(h) = 6h, the estimates Iluill ~ r '  and Ll~ell ~ r' are true for each i =  1,2 . . . . .  
Due to the inequality 

J ( u )  + Ilu - u i -~ l l  2 ~ Y + 1 Ilull 2 + Ilfllv.llull + lib/i-Ill 2 -[- 2I(U, u e 1)1 

and 

if Ilu/-~Jl ~ r', u* ~ Qo n Sr,/8(o ) , 

we can estimate 

rain {J(u)  + Ilu - ui-lll 2} < (M + 4)(r ')  2 + I l f l l v , r ' .  (24) 
uEQ o 

On the other hand, for Ilull > r /2  the inequality 

r 2 1 
J (u )  -}-[lu - u i - l l l 2  ~ - ~  - r ' r -  ~ I l f l l v * r  (25) 

holds true. According to (24), (25) one can conclude that if 

2 r 1 
(M + 4)(r ')  2 + Il f[lv,r '  < ~ - r 'r  - -~ [If[lv.r (26) 

the points qi belong to St/2(0). 
Since r' < r/2,  condition (26) is obviously satisfied if 

2 
r 

(M + 4)(r ')  2 + r ' r <  ~ - Ilfll~*r, 

but this inequality is a conclusion of (23). 
On this way we obtain q i E  Sr/2(0 ) and, therefore, q~= argminueK0 ~(u) .  

Using the expression 

1 (Zu, u) + [lull 2 -2 (u ,  / g i - 1 )  __ (f~ U) -[-Ilu/-lll2, I[ti(U ) = 

from inequality (21) it follows 

II qill2 ~< (c0(ll fll0 + 2r ')  z + (/)2)1,2 

and together with (22), if r  < r /2  holds, there exists an element z ~ E Qi such 
that IIz i -  qill ~ q~(hi). 

Finally, if for ~p(h) = ~h the choice of (h i} ,  {6~} and {ei} satisfies the condition 
(7), then estimate (5) is fulfilled with the described function q~. This leads to the 
statement of 
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T H E O R E M  3. Let q~(h) = [c0(llfll0 + 2r) 2 + r211/2ch = ~h and moreover, r >  
411fllv* and r' satisfy condition (23) and the conditions o f  Theorem 2 excluding 
Assumption 1. Then for 0 = K'  N St(O), where K' = U ~ U { qi}, the inequality (5) 

is satisfied. 

An analogous result yields in the case where instead of (21) the estimate 

Ilull  ~ rill  f l l0  2 + c2 (27) 

holds with cl, Ca independent  of f and u. 
The validity of the estimates (21) and (27) is established for concrete variatio- 

nal inequalities (in particular, cf. Ficchera, 1972 for Signorini problems; Kustova, 
1985 for the isotropic variant of contact problems in the elasticity theory).  

Regarding the verification of condition (4) for the case that inclusion K i C K 0 is 
not guaranteed,  we must remark that this essentially depends on the given 
expression of K 0 and the used triangulation method for the approximation of the 
domain. For  instance, in case of a problem with an obstacle on the boundary (cf. 
Hlavacek et al., 1986), where 

K 0 = {u C H i :  u/> w 0 a.e. on F} , (28) 

the inclusion K i C Ko, generally speaking, cannot be guaranteed. However ,  if 
Ki C K o holds for w 0 = 0 (this happens if 12 is a polyhedron or, in more general 
situations, by using special approximations on the basis of triangulation with 
curve-elements near the boundary of ~) ,  a corresponding inequality can be 
proved in case where w 0 is the trace on F of any function w E H 2. Then any 
element  v ~ E K i can be expressed by 

i S i S i K" . D = OJhi ~-  , where E ~- K 0 - ~o 

Because of [Iw - wh[ [ ~< c[[w[[zh, it follows that 

p(Ki, Ko) cllo ll H �9 

Concerning convex semi-infinite programs we consider V-= ~n and K o has the 
expression 

K o = { u E U :  g ( u , t ) < ~ O , t @ M ) ,  U C ~  n. 

Under  the usual assumptions (cf. Tichatschke, 1985) that U is convex and closed, 
M is a compact subset of any normed space Y and, J and gt (t E M) : u--> g(u, t) 
are convex, finite valued functions on ~n, the family {Ki} is determined by a 
discretization of M. If M i C M is a finite hi-grid on the compact M, then the 
approximated set K i is given by 

K i = { u E U :  g (u , t )<O,  t E M ~ } .  
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The choice of the corresponding function q is characterized in the following 
statement. 

T H E O R E M  4. Let  r be such that U ~ n Sr(O ) ~ 0 and int Sr(O ) contains a Slater 
po in t  z : z E U, suptEM g(z ,  t) < O. Furthermore,  suppose that there exists a con- 
stant L such that for  every t, t' E M the inequality 

sup [g(u, t) - g(u,  t')l ~< g lit - t' II Y (29) 
u~UnSr(O) 

holds. Then 

PH(Qo, Qi) ~ 2 r L h i ,  with a - m a x g ( z ,  t) 
a tEM 

i .e . ,  the conditions (4), (5) are satisfied with ~o(h)= 2 rLh.  a 

In the first of the following two examples the initial program is solvable, but the 
norms of the solutions u *'~ E Arg minuegl J(u) of the auxiliary programs tend to 
infinity. In the second example in case of the solvability of the initial problem, the 
discretized problems are unsolvable. But the described approach of iterative 
regularization guarantees in a natural manner that always the constructed mini- 
mizing sequence converges to some element of the solution sets. 

E X A M P L E  1. Consider the following simple linear semi-infinite program: V= 
~2, 

U = { ( v l ,  v2):v2>~O},  J ( u ) = - u  1, M=[O,  1], 

g(u,  t) = max{u~ - t, u 1 - tZu2} . 

0 For M i a finite h;-grid on [0, 1] is chosen such that t i # O, where t o = min{t: t E 
M3. 

It is clear that the points u * =  (0, a), with a I>0, are the solutions of this 
program. Considering the discretized problems by replacing M i instead of M, we 
get the following solution points u * ' i = ( t ~  where bi~>(t~ -1, i.e., 
limi[u*'il] = ~. Setting fii=,,iz,((t0~2 1), r~>2, we have fi iE K i n Sr(0), 

J(v  i ) -  J(u*'i)<-h~ and p(Q~, Q o ) ~ < m i n { h / , h ~ r } .  

Hence, for a corresponding choice of ( h i }  , {el) and r the conditions of Theorem 
2 are fulfilled and guarantee the convergence of a minimizing sequence {u i} 
constructed by method (2), (3) to a solution of the initial problem. 

E X A M P L E  2. It arises from the first one by replacing g by g(u,  t) = u 1 - tu 2. 
Here,  u * =  (0, a), a >10 and with the same discretization of M we get problems 
for which infueKi J(u) -- -oo. Moreover, for this example Assumption 2 cannot be 
fulfilled. But since p (Qi ,  Qo) <~ rhi, the convergence of the modified method with 
the objective functional (14) is achieved, using the corresponding parameters 
{e~), {h~} and {6,.). 
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REMARK 4. The non-constructive condition (2) can be satisfied, for instance, 
by using the two side functional estimates for the solution of the approximated 
problems. Such estimates occur in a series of penalty methods and methods of 
modified Lagrange functions (cf. Grossmann and Kaplan, 1979). Moreover, in 
case of treating linear or quadratic semiinfinite programs and for the majority of 
applied variational inequalities we get stable, finite dimensional linear or qua- 
dratic programs for which exact solution methods are known. 
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